Product Description

A beam coupling, also known as helical coupling, is a flexible coupling for transmitting torque between 2 shafts while allowing for angular misalignment, parallel offset and even axial motion, of 1 shaft relative to the other. This design utilizes a single piece of material and becomes flexible by removal of material along a spiral path resulting in a curved flexible beam of helical shape. Since it is made from a single piece of material, the Beam Style coupling does not exhibit thebacklash found in some multi-piece couplings. Another advantage of being an all machined coupling is the possibility to incorporate features into the final product while still keep the single piece integrity.

Changes to the lead of the helical beam provide changes to misalignment capabilities as well as other performance characteristics such as torque capacity and torsional stiffness. It is even possible to have multiple starts within the same helix.

 The material used to manufacture the beam coupling also affects its performance and suitability for specific applications such as food, medical and aerospace. Materials are typically aluminum alloy and stainless steel, but they can also be made in acetal, maraging steel and titanium. The most common applications are attaching encoders to shafts and motion control for robotics.

Please contact us to learn more.
 

Type Description Bore(mm)
BR D18L25 4~6.35
D20L25 4~8
D25L30 5~12
D32L40 8~16
DR D12L19 3~6
D16L24 3~6.35
D18L25 3~10
D25L30 5~14
BE D16L23 3~6
D18L25 3~6.35
D20L26 4~8
D25L31 5~12
D32L41 6~16

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Torque and Speed Ratings for Different Sizes and Materials of Beam Couplings

The torque and speed ratings of beam couplings vary depending on their size, design, and material composition. Different manufacturers offer beam couplings in various configurations to meet specific application requirements. Here are some general considerations regarding torque and speed ratings for different sizes and materials of beam couplings:

  • Size and Design:

    Beam couplings come in different sizes and designs to accommodate various shaft diameters and misalignment compensation needs. Larger beam couplings typically have higher torque ratings, as their size allows for more robust construction and increased torsional rigidity. Likewise, different designs, such as single-beam, multi-beam, or bellows couplings, can affect the torque and speed capabilities.

  • Material Composition:

    The choice of material for beam couplings significantly impacts their torque and speed ratings. Common materials used in beam couplings include stainless steel, aluminum, and other high-strength alloys. Stainless steel couplings generally have higher torque ratings and are more suitable for high-speed applications due to their excellent mechanical properties and resistance to wear and corrosion.

  • Manufacturer Specifications:

    Each manufacturer provides specific torque and speed ratings for their beam coupling products. These ratings are determined through extensive testing and analysis to ensure reliable and safe operation within the specified limits. Always refer to the manufacturer’s datasheets and technical documentation for accurate and up-to-date information on torque and speed ratings.

  • Operating Environment:

    The operating environment can also influence the torque and speed ratings of beam couplings. Factors such as temperature, humidity, and exposure to chemicals or harsh conditions may affect the material properties and performance of the coupling. Consider the application’s specific environment when selecting the appropriate coupling.

It is crucial to choose a beam coupling that matches the torque and speed requirements of your application. Exceeding the rated torque or speed can lead to premature wear, coupling failure, and potential damage to other system components. Conversely, selecting a coupling with excessive torque or speed capacity may result in unnecessary costs and reduced system efficiency.

When selecting a beam coupling, always consult the manufacturer’s documentation and consider the specific application requirements to ensure that the chosen coupling can handle the intended torque and speed levels effectively and safely.

clamp coupling

Materials Used in Manufacturing Beam Couplings

Beam couplings are commonly made from various materials, each offering unique properties that suit different application requirements. Some of the most common materials used in manufacturing beam couplings include:

  • Aluminum:

    Aluminum is a lightweight and cost-effective material commonly used in beam coupling construction. Aluminum beam couplings are ideal for applications where weight reduction is essential, such as in robotics or aerospace systems. They provide moderate mechanical strength and flexibility while offering good resistance to corrosion.

  • Stainless Steel:

    Stainless steel is a popular choice for beam couplings due to its excellent mechanical properties and high corrosion resistance. Stainless steel couplings are well-suited for demanding applications that require strength, durability, and resistance to harsh environments. They are commonly used in industries such as food processing, medical equipment, and marine applications.

  • Brass:

    Brass is a material known for its good electrical conductivity and moderate strength. Brass beam couplings are suitable for specific applications that require electrical grounding or where non-magnetic properties are essential. However, compared to stainless steel or aluminum, brass couplings may have slightly lower mechanical strength and corrosion resistance.

  • Plastic/Polymer:

    Plastic or polymer beam couplings are chosen for their lightweight and cost-effective nature. They are often used in applications where weight reduction is critical, and they offer electrical insulation properties. However, plastic couplings may have lower mechanical strength compared to metal couplings and are not suitable for high-torque applications or extreme environmental conditions.

  • Carbon Steel:

    Carbon steel is a robust and widely used material for beam couplings. Carbon steel couplings offer good mechanical strength and are suitable for various industrial applications. However, they may not provide the same level of corrosion resistance as stainless steel and may require proper maintenance to prevent rusting.

The choice of material depends on the specific needs of the application, including factors such as required strength, weight constraints, environmental conditions, and corrosion resistance. Manufacturers often provide a range of material options for their beam couplings to accommodate diverse industrial and commercial uses.

clamp coupling

Advantages of Using Beam Couplings in Precision Positioning Systems

Beam couplings offer several advantages when used in precision positioning systems. These advantages make them a popular choice for applications that demand accurate motion control and positioning. Here are the key benefits of using beam couplings in precision positioning systems:

  • 1. Misalignment Compensation:

    Beam couplings are designed to provide flexible connections between shafts, allowing them to compensate for various types of misalignment, including angular, axial, and parallel misalignment. In precision positioning systems, where accurate alignment is critical for maintaining positioning accuracy, beam couplings help prevent unnecessary stress on the components caused by misalignment, reducing wear and ensuring consistent performance.

  • 2. Torsional Rigidity:

    Beam couplings offer high torsional rigidity, meaning they effectively transmit torque without significant torsional deformation. This rigidity is essential for maintaining precise motion control and minimizing backlash in precision positioning systems. It ensures that the desired position is accurately maintained without undue twisting or torsional deflection.

  • 3. Low Inertia:

    Beam couplings have a compact and lightweight design, resulting in low rotational inertia. Low inertia is crucial in precision positioning systems, as it allows for rapid and accurate changes in direction and speed. The low inertia of beam couplings helps improve the system’s response time and overall dynamic performance.

  • 4. Zero Backlash:

    Beam couplings can provide backlash-free performance when correctly installed and utilized within their specified torque and speed ratings. This characteristic is particularly valuable in precision positioning systems, where any play or backlash can result in position errors and reduced accuracy.

  • 5. Vibration Dampening:

    Beam couplings exhibit some degree of vibration dampening due to their flexible design. This feature is beneficial in precision positioning systems, where damping vibrations can reduce mechanical resonances, improve stability, and minimize settling times, resulting in smoother and more precise motion.

  • 6. Long Service Life:

    High-quality beam couplings made from durable materials have excellent resistance to wear and fatigue. With proper installation and maintenance, beam couplings can have a long service life, providing reliable and consistent performance in precision positioning systems.

  • 7. Easy Installation:

    Beam couplings are relatively easy to install and do not require elaborate alignment procedures. Their flexible design allows for some misalignment tolerance during installation, making the setup process more straightforward and efficient.

  • 8. Cost-Effective:

    Beam couplings offer an excellent balance of performance and cost-effectiveness. Compared to some other types of precision couplings, beam couplings often provide a more budget-friendly solution without compromising on essential performance characteristics.

In summary, beam couplings offer significant advantages in precision positioning systems, including misalignment compensation, torsional rigidity, low inertia, zero backlash, vibration dampening, long service life, easy installation, and cost-effectiveness. These advantages contribute to the overall accuracy, stability, and reliability of precision motion control applications, making beam couplings a popular choice for demanding positioning tasks.

China high quality China Flexible Beam Coupling  China high quality China Flexible Beam Coupling
editor by CX 2024-01-25