Product Description

Flexible Beam Coupling Shaft Coupling

 

Description of Flexible Beam Coupling Shaft Coupling

1. One-piece metallic beam coupling
2. Zero backlash, flexible shaft
3. Spiral and parallel cut designs available
4. Accommodates misalignment and shaft endplay
5. Identical clockwise and counterclockwise rotation
6. Available in aluminum or stainless steel
7. Multiple bore and shaft connecting configurations
 

Parameter of Flexible Beam Coupling Shaft Coupling

Model

D (mm)

L (mm)

d1-d2 (mm)

hex screw

L1 (mm)

L2 (mm)

L3 (mm)

Fasten Torque (n.m)

LR-D-D15L20

15

20

3.0-8.0

M3.

2.5

2

0.4

1.2

LR-D-D19L25

19

25

6.0-10.0

M3.

3

2

0.4

1.2

LR-D-D25L30

25

30

8.0-12.0

M4

4

2

0.4

2.5

LR-D-D30L35

30

35

8.0-18.0

M4

4

2.5

0.5

2.5

LR-D-D35L40

35

40

8.0-22.0

M5

5

2.5

0.5

5

LR-D-D40L45

40

45

10.0-28.0

M6

6

3.5

0.6

8

Model

Max bore (mm)

Rated Torque (n.m)

Max Torque (n.m)

Max speed (rpm)

Moment of Inertia (kg.m2)

Permissible Radial Deviation (degree)

Permissible Angular Deviation (degree)

LR-D-D15L20

8

0.5

1

30000

2.5*10-7

0.05

0.5

LR-D-D19L25

10

1

2

25000

5.8*10-7

0.05

0.5

LR-D-D25L30

12

1.5

3

18000

1.8*10-6

0.05

0.5

LR-D-D30L35

18

2

4

16000

4.7*10-6

0.05

0.5

LR-D-D35L40

22

3

6

14000

1.1*10-5

0.05

0.5

LR-D-D40L45

28

6

12

12000

2.3*10-5

0.05

0.5

Model

D (mm)

L (mm)

d1-d2 (mm)

Fasten Torque (n.m)

LT-D-D15L20

15

20

4.0-5.0

0.7

LT-D-D19L25

19

25

6.0-10.0

0.7

LT-D-D25L30

25

30

8.0-12.0

0.7

LT-D-D30L35

30

35

8.0-18.0

1.7

LT-D-D35L40

35

40

8.0-22.0

4

LT-D-D40L45

40

45

10.0-28.0

4

Model

Max bore (mm)

Rated Torque (n.m)

Max Torque (n.m)

Max speed (rpm)

Moment of Inertia

(kg.m2)

Permissible Radial Deviation

(degree)

Permissible Angular Deviation

(degree)

LT-D-D15L20

5

0.5

1

30000

2.5*10-7

0.05

0.5

LT-D-D19L25

10

1

2

25000

5.8*10-7

0.05

0.5

LT-D-D25L30

12

1.5

3

18000

1.8*10-6

0.05

0.5

LT-D-D30L35

18

2

4

16000

4.7*10-6

0.05

0.5

LT-D-D35L40

22

3

6

14000

1.1*10-5

0.05

0.5

LT-D-D40L45

28

6

12

12000

2.3*10-5

0.05

0.5

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Contribution of Beam Couplings to Dampening Vibrations and Reducing Resonance

Beam couplings play a significant role in dampening vibrations and reducing resonance in motion control systems. Their unique design and material properties contribute to this effect in the following ways:

  • Helical Beam Design:

    Beam couplings consist of helical beams that provide flexibility and torsional elasticity. When subjected to vibrations or dynamic loads, the helical beams can absorb and dampen these oscillations. The ability to flex and twist helps in dissipating vibrational energy and preventing it from propagating through the system.

  • Vibration Absorption:

    Beam couplings are designed to be relatively compliant, which allows them to absorb vibrations and shocks generated during operation. This absorption capability is especially beneficial when dealing with high-speed applications or systems with rapid accelerations and decelerations.

  • Reduced Resonance:

    Resonance occurs when the natural frequency of a system matches the frequency of external vibrations or disturbances. This phenomenon can lead to excessive vibration amplitudes, potentially causing damage or affecting the system’s performance. Beam couplings’ torsional elasticity helps to mitigate the risk of resonance by altering the system’s natural frequency, reducing the likelihood of resonance occurring within the operating range.

  • Material Selection:

    The choice of materials for beam couplings also contributes to their ability to dampen vibrations. Materials with good damping characteristics, such as certain alloys or elastomers, are commonly used to manufacture beam couplings. These materials can dissipate vibrational energy as heat, minimizing the transmission of vibrations to other system components.

  • Shock Absorption:

    In addition to dampening vibrations, beam couplings can absorb shocks or sudden impact loads. When the system experiences sudden changes in load or abrupt movements, the flexible nature of beam couplings helps to cushion and distribute the shock, protecting the machinery and reducing stress on the connected components.

Overall, the combination of the helical beam design, vibration absorption properties, reduced resonance, and appropriate material selection makes beam couplings effective in dampening vibrations and enhancing the overall stability and performance of motion control systems. When properly selected and installed, beam couplings can contribute to smoother and quieter operation, increased system reliability, and reduced wear and tear on critical components.

clamp coupling

Safety Considerations for Installing or Using Beam Couplings in Industrial Setups

When installing or using beam couplings in industrial setups, several safety considerations should be taken into account to ensure the safe and reliable operation of the motion control systems. Here are some important safety considerations:

  • Proper Installation:

    Ensure that beam couplings are correctly installed according to the manufacturer’s instructions. Follow the recommended torque values for tightening set screws or clamps to avoid over-tightening or under-tightening, which could lead to coupling failure or excessive wear.

  • Shaft Alignment:

    Accurate shaft alignment is crucial to prevent unnecessary stress on the coupling and connected components. Misalignment can lead to premature wear, vibrations, and reduced system performance. Utilize alignment tools and techniques to achieve precise shaft alignment within the coupling’s specified tolerances.

  • Overloading:

    Avoid exceeding the beam coupling’s rated torque capacity or maximum axial load. Overloading the coupling can lead to deformation, coupling failure, or damage to connected equipment. Ensure that the coupling is appropriately sized for the application’s torque requirements.

  • Regular Inspection:

    Perform routine inspections of beam couplings to check for signs of wear, damage, or misalignment. Address any issues promptly and replace worn or damaged couplings to prevent unexpected failures.

  • Environmental Conditions:

    Consider the operating environment when selecting beam couplings. Different materials offer varying levels of resistance to corrosion, temperature extremes, and other environmental factors. Choose a material that can withstand the specific conditions of the industrial setup.

  • Protective Enclosures:

    If the beam couplings are exposed to moving parts or hazardous equipment, consider using protective enclosures or guards to prevent accidental contact and ensure operator safety.

  • Regular Maintenance:

    Follow a regular maintenance schedule for the entire motion control system, including beam couplings. Lubricate moving parts as recommended by the manufacturer and replace worn components to maintain reliable operation.

  • Training and Awareness:

    Ensure that personnel involved in the installation, operation, and maintenance of the motion control system are properly trained and aware of safety procedures. Emphasize the importance of following safety guidelines to prevent accidents and injuries.

By taking these safety considerations into account, industrial setups can enhance the safety and efficiency of their motion control systems. Regular maintenance, proper installation, and adherence to safety guidelines are essential to ensuring the longevity and reliable performance of beam couplings and the overall safety of the workplace.

clamp coupling

Considerations for Using Beam Couplings in High-Speed Applications

When using beam couplings in high-speed applications, several specific considerations are essential to ensure optimal performance, safety, and reliability. High-speed operation introduces additional challenges that need to be addressed to maximize the benefits of beam couplings. Here are the key considerations:

  • 1. Balance and Runout:

    Ensure that the beam coupling and connected components are well-balanced and have minimal runout. Imbalanced couplings can cause vibration and resonance at high speeds, leading to reduced precision and potential damage to the system. Minimizing runout helps maintain smooth and stable operation.

  • 2. Material Selection:

    Choose high-quality materials for the beam coupling that can withstand the forces and stresses experienced during high-speed operation. High-strength alloys, such as stainless steel or aluminum, are commonly used for beam couplings in high-speed applications due to their excellent mechanical properties and fatigue resistance.

  • 3. Torsional Rigidity:

    Consider the required torsional rigidity for your specific high-speed application. While beam couplings offer good torsional rigidity, extremely high-speed applications might demand specialized couplings with even higher rigidity to ensure accurate torque transmission and minimize torsional deformation.

  • 4. Critical Speed:

    Be aware of the critical speed of the beam coupling, which is the rotational speed at which the coupling’s natural frequency coincides with the operating speed. At critical speed, the coupling can experience excessive vibration and become susceptible to resonance, leading to potential failure. Operating below the critical speed is essential to avoid such issues.

  • 5. Lubrication:

    For high-speed applications, proper lubrication of the beam coupling is crucial to reduce friction, wear, and heat generation. Lubrication also helps dissipate any generated heat, maintaining the coupling’s integrity during prolonged operation.

  • 6. Cooling:

    In applications with extended high-speed operation, consider implementing cooling mechanisms to prevent overheating of the beam coupling. Excessive heat can affect the material properties and lead to premature wear or failure.

  • 7. Dynamic Balancing:

    For high-speed systems, it is essential to dynamically balance the rotating components, including the beam coupling, to minimize vibration and prevent potential damage to the system and surrounding equipment.

  • 8. Regular Inspection and Maintenance:

    Perform regular inspections and maintenance to detect any signs of wear, fatigue, or misalignment in the beam coupling. Addressing issues promptly can prevent unexpected failures and costly downtime.

By carefully considering these factors and ensuring proper selection, installation, and maintenance of beam couplings in high-speed applications, you can enhance performance, extend the life of the coupling, and promote safe and reliable operation in your motion control system.

China Good quality Flexible Beam Coupling Shaft Coupling  China Good quality Flexible Beam Coupling Shaft Coupling
editor by CX 2024-05-17