Product Description

A beam coupling, also known as helical coupling, is a flexible coupling for transmitting torque between 2 shafts while allowing for angular misalignment, parallel offset and even axial motion, of 1 shaft relative to the other. This design utilizes a single piece of material and becomes flexible by removal of material along a spiral path resulting in a curved flexible beam of helical shape. Since it is made from a single piece of material, the Beam Style coupling does not exhibit thebacklash found in some multi-piece couplings. Another advantage of being an all machined coupling is the possibility to incorporate features into the final product while still keep the single piece integrity.

Changes to the lead of the helical beam provide changes to misalignment capabilities as well as other performance characteristics such as torque capacity and torsional stiffness. It is even possible to have multiple starts within the same helix.

 The material used to manufacture the beam coupling also affects its performance and suitability for specific applications such as food, medical and aerospace. Materials are typically aluminum alloy and stainless steel, but they can also be made in acetal, maraging steel and titanium. The most common applications are attaching encoders to shafts and motion control for robotics.

Please contact us to learn more.
 

Type Description Bore(mm)
BR D18L25 4~6.35
D20L25 4~8
D25L30 5~12
D32L40 8~16
DR D12L19 3~6
D16L24 3~6.35
D18L25 3~10
D25L30 5~14
BE D16L23 3~6
D18L25 3~6.35
D20L26 4~8
D25L31 5~12
D32L41 6~16

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Specific Maintenance Requirements for Prolonging the Life of Beam Couplings

Proper maintenance is essential for prolonging the life and ensuring the optimal performance of beam couplings in motion control systems. While beam couplings are designed for reliability and low maintenance, some specific maintenance practices can help maximize their longevity. Here are the key maintenance requirements:

  • Regular Inspection:

    Perform regular visual inspections of the beam couplings to check for signs of wear, damage, or misalignment. Look for any visible cracks, deformations, or signs of corrosion. Detecting issues early can prevent further damage and potential coupling failure.

  • Lubrication:

    For couplings with movable components, such as beam couplings with elastomeric elements or bellows, proper lubrication is crucial. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricants. Lubrication helps reduce friction and wear, ensuring smooth operation.

  • Torque Checks:

    Periodically check the tightness of the coupling’s fasteners, such as set screws or clamps. Over time, vibrations and loads can cause these fasteners to loosen. Make sure they are properly tightened to maintain a secure connection between the shafts and the coupling.

  • Environmental Protection:

    If the beam couplings are exposed to harsh environments, consider implementing protective measures. Shield the couplings from dirt, dust, moisture, and corrosive substances that could impact their performance and lead to premature wear.

  • Alignment Checks:

    Regularly check the alignment of the connected shafts. Misalignment can place additional stress on the coupling and reduce its lifespan. Make any necessary adjustments to ensure proper shaft alignment within the coupling’s specified tolerance.

  • Load Capacity:

    Ensure that the beam coupling is operating within its rated load capacity. Avoid exceeding the maximum torque or axial load to prevent overloading the coupling and potential failure.

  • Replace Worn Components:

    If any components of the beam coupling show signs of wear or damage beyond their limits, replace them promptly. Continuing to use worn or damaged couplings can lead to unsafe operation and compromise system performance.

By following these specific maintenance requirements, you can prolong the life of beam couplings, reduce the risk of unexpected failures, and maintain the overall efficiency and reliability of your motion control system. Regular inspections and proactive maintenance practices are crucial to ensure trouble-free operation and maximize the lifespan of beam couplings in various applications.

clamp coupling

Contribution of Beam Couplings to Overall Efficiency and Reliability of Motion Systems

Beam couplings play a crucial role in enhancing the overall efficiency and reliability of motion control systems in various industrial applications. Their unique design and material properties contribute to these advantages in several ways:

  • High Torque Transmission:

    Beam couplings provide efficient torque transmission between shafts, allowing for precise and reliable power transfer. They can handle high torque loads without introducing backlash or slippage, ensuring accurate motion control and consistent performance.

  • Flexibility and Misalignment Compensation:

    Beam couplings offer flexibility, allowing them to accommodate small shaft misalignments. This characteristic reduces stress on the connected components and bearings, minimizing wear and enhancing the system’s overall reliability.

  • Low Inertia:

    Due to their lightweight design, beam couplings have low inertia, which means they have minimal impact on the system’s acceleration and deceleration. This low inertia helps in achieving faster response times and smoother motion profiles, improving the overall efficiency of the system.

  • Vibration Dampening:

    Beam couplings dampen vibrations and absorb shocks generated during operation. By reducing vibrational energy transmission, they minimize the risk of resonance and prevent premature wear or damage to the motion system components.

  • Wide Range of Sizes and Materials:

    Manufacturers offer beam couplings in various sizes and materials to suit different application requirements. This versatility allows for optimal coupling selection based on factors such as torque capacity, shaft diameter, and environmental conditions, ensuring an efficient and reliable coupling solution.

  • Easy Installation and Maintenance:

    Beam couplings are relatively simple to install and maintain. Their clamp or set screw mounting methods simplify the coupling assembly process. Additionally, routine maintenance, such as lubrication and visual inspections, helps extend their lifespan and ensures continuous system reliability.

  • Non-Magnetic and Electrical Isolation Options:

    Some beam couplings are available in non-magnetic materials, such as plastic or brass, which are suitable for applications where magnetic interference must be minimized. Additionally, plastic couplings offer electrical isolation properties, making them useful in applications requiring electrical insulation.

Overall, beam couplings contribute significantly to the overall efficiency and reliability of motion systems by providing precise torque transmission, compensating for misalignment, minimizing vibrations, and offering a broad range of options to meet diverse application needs. Their durable construction and ease of installation make them a dependable choice for motion control in various industrial settings.

clamp coupling

Considerations for Using Beam Couplings in High-Speed Applications

When using beam couplings in high-speed applications, several specific considerations are essential to ensure optimal performance, safety, and reliability. High-speed operation introduces additional challenges that need to be addressed to maximize the benefits of beam couplings. Here are the key considerations:

  • 1. Balance and Runout:

    Ensure that the beam coupling and connected components are well-balanced and have minimal runout. Imbalanced couplings can cause vibration and resonance at high speeds, leading to reduced precision and potential damage to the system. Minimizing runout helps maintain smooth and stable operation.

  • 2. Material Selection:

    Choose high-quality materials for the beam coupling that can withstand the forces and stresses experienced during high-speed operation. High-strength alloys, such as stainless steel or aluminum, are commonly used for beam couplings in high-speed applications due to their excellent mechanical properties and fatigue resistance.

  • 3. Torsional Rigidity:

    Consider the required torsional rigidity for your specific high-speed application. While beam couplings offer good torsional rigidity, extremely high-speed applications might demand specialized couplings with even higher rigidity to ensure accurate torque transmission and minimize torsional deformation.

  • 4. Critical Speed:

    Be aware of the critical speed of the beam coupling, which is the rotational speed at which the coupling’s natural frequency coincides with the operating speed. At critical speed, the coupling can experience excessive vibration and become susceptible to resonance, leading to potential failure. Operating below the critical speed is essential to avoid such issues.

  • 5. Lubrication:

    For high-speed applications, proper lubrication of the beam coupling is crucial to reduce friction, wear, and heat generation. Lubrication also helps dissipate any generated heat, maintaining the coupling’s integrity during prolonged operation.

  • 6. Cooling:

    In applications with extended high-speed operation, consider implementing cooling mechanisms to prevent overheating of the beam coupling. Excessive heat can affect the material properties and lead to premature wear or failure.

  • 7. Dynamic Balancing:

    For high-speed systems, it is essential to dynamically balance the rotating components, including the beam coupling, to minimize vibration and prevent potential damage to the system and surrounding equipment.

  • 8. Regular Inspection and Maintenance:

    Perform regular inspections and maintenance to detect any signs of wear, fatigue, or misalignment in the beam coupling. Addressing issues promptly can prevent unexpected failures and costly downtime.

By carefully considering these factors and ensuring proper selection, installation, and maintenance of beam couplings in high-speed applications, you can enhance performance, extend the life of the coupling, and promote safe and reliable operation in your motion control system.

China best Clamp Type Spiral Beam Coupling for Printing Machines  China best Clamp Type Spiral Beam Coupling for Printing Machines
editor by CX 2024-04-25