Product Description

Product Name Flexible beam coupling
Material Aluminum 
Type FC16-63
Structure  1 shaft ( 1 / 1a / 1b ) with bore
Bore size  5-35 mm
Weight  About 9.2-580G g / pcs
packing plastic bag +paper box +wooden box +wooden pallet

1. Engineering: machine tools, foundry equipments, conveyors, compressors, painting systems, etc.

2. Pharmaceuticals& Food Processing: pulp mill blowers, conveyor in warehouse, agitators, grain, boiler, bakery machine, labeling machine, robots, etc.

3. Agriculture Industries: cultivator, rice winnower tractor, harvester, rice planter, farm equipment, etc.

4. Texitile Mills: looms, spinning, wrappers, high-speed auto looms, processing machine, twister, carding machine, ruler calendar machine, high speed winder, etc.

5. Printing Machinery: newspaper press, rotary machine, screen printer machine, linotype machine offset printer, etc.

6. Paper Industries: chipper roll grinder, cut off saw, edgers, flotation cell and chips saws, etc.

7. Building Construction Machinery: buffers, elevator floor polisher mixing machine, vibrator, hoists, crusher, etc.

8. Office Equipments: typewriter, plotters, camera, money drive, money sorting machine, data storage equipment, etc.

9. Glass and Plastic Industries: conveyor, carton sealers, grinders, creeper paper manufacturing machine, lintec backing, etc.

10. Home Appliances: vacuum cleaner, laundry machine, icecream machine, sewing machine, kitchen equipments, etc.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Comparison of Beam Couplings to Other Coupling Types in Terms of Backlash and Torsional Stiffness

When considering coupling options for motion control systems, two critical performance characteristics to evaluate are backlash and torsional stiffness. Backlash refers to the amount of rotational play or free movement between the connected shafts, while torsional stiffness indicates a coupling’s ability to resist torsional deformation when transmitting torque. Let’s compare beam couplings to other common coupling types in terms of these factors:

  • Beam Couplings:

    Beam couplings generally exhibit low to minimal backlash due to their single or multiple helical beam design. The helical beams provide some flexibility to accommodate misalignment, but they maintain a relatively tight connection between the shafts, resulting in low backlash. This characteristic is especially valuable in precision motion control applications where eliminating play is essential for accurate positioning.

    In terms of torsional stiffness, beam couplings offer moderate to high values. The helical beams provide good torsional rigidity, making them suitable for applications that demand precise torque transmission and minimal torsional deflection. However, compared to other types like disc or jaw couplings, beam couplings may have slightly lower torsional stiffness.

  • Disc Couplings:

    Disc couplings are known for their excellent torsional stiffness, providing robust torque transmission and minimal torsional deformation. They are ideal for applications requiring high precision and where torsional rigidity is critical.

    Regarding backlash, disc couplings typically have low to negligible values. Their design allows for precise and direct transmission of torque between the shafts, resulting in minimal rotational play.

  • Jaw Couplings:

    Jaw couplings offer low to moderate torsional stiffness, making them suitable for applications with moderate torque requirements. They provide some flexibility to handle misalignment, but their torsional rigidity is not as high as disc couplings or certain types of beam couplings.

    Backlash in jaw couplings can vary depending on the specific design and materials. Some jaw couplings may have slightly more backlash compared to beam or disc couplings due to the elastomeric spider element used in their construction.

  • Oldham Couplings:

    Oldham couplings offer low backlash performance due to their unique three-piece design, which incorporates two outer hubs and a middle disk. The design allows for consistent torque transmission and minimal play between the shafts.

    Torsional stiffness in Oldham couplings is moderate, providing a balance between flexibility and rigidity. While not as rigid as disc couplings, they still offer reliable torque transmission for various motion control applications.

In summary, beam couplings offer low to minimal backlash and moderate to high torsional stiffness, making them suitable for precision motion control applications that require a balance between flexibility and rigidity. Disc couplings provide excellent torsional stiffness and low backlash, making them an ideal choice for high-precision applications. Jaw couplings and Oldham couplings offer moderate performance in both backlash and torsional stiffness and are well-suited for applications with moderate torque and misalignment compensation requirements.

When selecting a coupling type, consider the specific needs of your application, such as the required precision, torque capacity, and misalignment compensation. Each coupling type has its advantages and limitations, and choosing the right one will contribute to the overall performance and reliability of your motion control system.

clamp coupling

Materials Used in Manufacturing Beam Couplings

Beam couplings are commonly made from various materials, each offering unique properties that suit different application requirements. Some of the most common materials used in manufacturing beam couplings include:

  • Aluminum:

    Aluminum is a lightweight and cost-effective material commonly used in beam coupling construction. Aluminum beam couplings are ideal for applications where weight reduction is essential, such as in robotics or aerospace systems. They provide moderate mechanical strength and flexibility while offering good resistance to corrosion.

  • Stainless Steel:

    Stainless steel is a popular choice for beam couplings due to its excellent mechanical properties and high corrosion resistance. Stainless steel couplings are well-suited for demanding applications that require strength, durability, and resistance to harsh environments. They are commonly used in industries such as food processing, medical equipment, and marine applications.

  • Brass:

    Brass is a material known for its good electrical conductivity and moderate strength. Brass beam couplings are suitable for specific applications that require electrical grounding or where non-magnetic properties are essential. However, compared to stainless steel or aluminum, brass couplings may have slightly lower mechanical strength and corrosion resistance.

  • Plastic/Polymer:

    Plastic or polymer beam couplings are chosen for their lightweight and cost-effective nature. They are often used in applications where weight reduction is critical, and they offer electrical insulation properties. However, plastic couplings may have lower mechanical strength compared to metal couplings and are not suitable for high-torque applications or extreme environmental conditions.

  • Carbon Steel:

    Carbon steel is a robust and widely used material for beam couplings. Carbon steel couplings offer good mechanical strength and are suitable for various industrial applications. However, they may not provide the same level of corrosion resistance as stainless steel and may require proper maintenance to prevent rusting.

The choice of material depends on the specific needs of the application, including factors such as required strength, weight constraints, environmental conditions, and corrosion resistance. Manufacturers often provide a range of material options for their beam couplings to accommodate diverse industrial and commercial uses.

clamp coupling

Handling Misalignment and Compensating for Shaft Offset in Beam Couplings

Beam couplings are designed to handle misalignment between connected shafts and compensate for shaft offset in motion control systems. Their flexible and helical beam structure allows them to accommodate various types of misalignment, ensuring smooth and reliable operation. Here’s how beam couplings handle misalignment and compensate for shaft offset:

  • Helical Beam Design:

    Beam couplings consist of one or more helical beams, which are thin, flexible metal strips arranged in a helix shape. The helical beam design gives beam couplings their characteristic flexibility, allowing them to bend and twist in response to misalignment and shaft offset.

  • Angular Misalignment:

    If the connected shafts are not collinear and are at an angle to each other, it results in angular misalignment. Beam couplings can handle angular misalignment by allowing the helical beams to flex, bending at an angle to accommodate the misaligned shafts. The flexibility of the beams enables the coupling to transmit torque smoothly even when the shafts are not perfectly aligned.

  • Axial Misalignment:

    Axial misalignment occurs when the two shafts are not on the same axis or are not aligned in the same line. Beam couplings can compensate for axial misalignment by permitting the helical beams to elongate or compress in the axial direction. This axial flexibility allows the coupling to accommodate the offset between the shafts without causing excessive stress on the components.

  • Parallel Misalignment:

    Parallel misalignment refers to the situation where the two shafts are not at the same height or parallel to each other. Beam couplings handle parallel misalignment by permitting the helical beams to shift laterally. This lateral movement allows the coupling to adjust to the offset between the shafts and maintain an effective connection.

  • Compensation Range:

    Beam couplings have a specified range of misalignment they can accommodate. The amount of misalignment they can handle depends on the number of helical beams and the design of the coupling. Multi-beam couplings typically have a higher misalignment compensation range compared to single-beam couplings, making them more suitable for applications with more significant misalignment requirements.

  • Limitations:

    While beam couplings can compensate for a certain degree of misalignment, they do have limitations. Excessive misalignment beyond the coupling’s rated capacity can lead to premature wear, increased stress on the components, and reduced coupling performance. It’s essential to operate the beam coupling within its specified misalignment limits to ensure optimal functioning and longevity.

In summary, beam couplings handle misalignment and compensate for shaft offset by virtue of their flexible helical beam design. The ability to bend, twist, elongate, and shift laterally enables them to accommodate angular, axial, and parallel misalignment in motion control systems. Choosing the appropriate beam coupling type and staying within its rated misalignment range are essential to ensure effective compensation and reliable operation in various applications.

China best Hot Sale Mighty Setscrew Coupling and Aluminum Helical Parallel Clamp Flexible Beam Couplings  China best Hot Sale Mighty Setscrew Coupling and Aluminum Helical Parallel Clamp Flexible Beam Couplings
editor by CX 2024-04-10