Product Description

Product Description

A beam coupling, also known as helical coupling, is a flexible coupling for transmitting torque between 2 shafts while allowing for angular misalignment, parallel offset and even axial motion, of 1 shaft relative to the other. This design utilizes A single piece of material and becomes flexible by removal of material along a spiral path resulting in a curved flexible beam of helical shape. Since it is made from a single piece of material, the Beam Style coupling does not exhibit the backlash found in some multi-piece couplings. Another advantage of being an all machined coupling is the possibility to incorporate features into the final product while still keep the single piece integrity.

 

Changes to the lead of the helical beam provide changes to misalignment capabilities as well as other performance characteristics such as torque capacity and torsional stiffness. It is even possible to have multiple starts within the same helix.

 

The material used to manufacture the beam coupling also affects its performance and suitability for specific applications such as food, medical and aerospace. Materials are typically aluminum alloy and stainless steel, but they can also be made in acetal, maraging steel and titanium. The most common applications are attaching encoders to shafts and motion control for robotics.
Features
1.Materail: Aluminium alloy or steel
2.Elastic Spider: Three type of Elatic Spider can be choosed 86SH. A 92SH. A 98SH. A 
3.Surface treatment: black finished / Anodizing 
4.High sensitivity  High torque rigid Zero back lash 
5.Type of shaft lock: Set screw or Clamp type 

6.Stock to ensure a prompt delivery with in 2 weeks.

7.High-performance with competitive prices.
Except our standard parts, we also can make the parts according customers’ drawing or design according customer requirement, please send us enquiry if there any need.

Detailed Photos

Product Parameters

Packaging & Shipping

Package  Standard suitable package / Pallet or container.
 Polybag inside export carton outside, blister and Tape and reel package available.
 If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

 10-20working days ofter payment receipt comfirmed (based on actual quantity).
 Packing standard export packing or according to customers demand.   

 Professional goods shipping forward.

Company Profile

FAQ

Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Simultaneous Handling of Axial Motion and Angular Misalignment by Beam Couplings

Beam couplings are designed to handle both axial motion and angular misalignment simultaneously in motion control systems. Their unique helical beam design allows them to accommodate various types of misalignment, providing flexibility in multiple axes. Let’s explore how beam couplings achieve this:

1. Axial Motion:

Beam couplings can compensate for axial motion, which occurs when the two connected shafts are not collinear and have some linear offset along their common axis. The helical beams of the coupling can elongate or compress to absorb the axial movement between the shafts. This axial flexibility enables the coupling to maintain a continuous and efficient connection even when the shafts experience slight linear displacement.

2. Angular Misalignment:

Angular misalignment refers to the situation where the two shafts are not perfectly aligned and are at an angle to each other. Beam couplings handle angular misalignment by allowing the helical beams to flex, bending at an angle to accommodate the misaligned shafts. The flexible beams can twist and adjust their shape as needed, providing a reliable connection between the shafts and transmitting torque efficiently.

3. Simultaneous Handling:

What makes beam couplings advantageous is their ability to handle both axial motion and angular misalignment simultaneously. As the shafts experience angular misalignment, the helical beams can flex to compensate for the misalignment angle. At the same time, if there is any axial motion between the shafts, the beams can elongate or compress to absorb the linear offset. This simultaneous handling of axial motion and angular misalignment allows beam couplings to maintain smooth operation and effective torque transmission even in applications with complex misalignment requirements.

It is essential to select the appropriate size and type of beam coupling based on the specific application’s misalignment characteristics and torque requirements. Properly installed and maintained beam couplings can provide reliable and efficient performance, ensuring accurate motion control and extended system life.

clamp coupling

Real-World Examples of Successful Beam Coupling Installations and Their Benefits

Beam couplings have been widely adopted in various industries, and there are numerous real-world examples of successful installations showcasing their benefits. Here are some specific cases:

  • Industrial Automation:

    In a factory automation setting, beam couplings are used in robotic arms and automated machinery to transmit torque between motors and actuators. The flexibility of beam couplings helps compensate for minor misalignments, reducing wear on connected components and enhancing system reliability. Additionally, the low inertia of beam couplings enables faster response times, improving the overall efficiency of the automated systems.

  • Medical Robotics:

    Medical robots, such as surgical robots and diagnostic equipment, rely on precise and smooth motion control. Beam couplings, with their low backlash and high torsional stiffness, ensure accurate positioning and reduced vibration. The stainless-steel construction of some medical-grade beam couplings makes them suitable for sterilization processes, ensuring compliance with medical industry requirements.

  • Photonic Systems:

    In optical systems and laser equipment, beam couplings are used to connect stepper motors and motion stages. The damping properties of beam couplings help reduce vibrations, preventing optical misalignment and maintaining the stability of laser beams. This is critical for high-precision applications like laser cutting and micromachining.

  • Satellite Components:

    Beam couplings find applications in satellite components, where weight and size constraints are critical. Aluminum or lightweight alloys are used to minimize the overall mass while providing reliable power transmission between actuators and mechanisms. The low inertia of beam couplings contributes to smoother satellite movements and precise adjustments in space.

  • Renewable Energy Systems:

    Beam couplings are employed in renewable energy systems, such as solar tracking mechanisms and wind turbine pitch control systems. Their ability to handle harsh environmental conditions, such as wind and weather exposure, ensures consistent and efficient energy production. The use of non-magnetic materials in some couplings prevents interference with sensitive electronics.

The benefits of successful beam coupling installations in these real-world examples include:

  • Improved Precision: Beam couplings provide accurate torque transmission, reducing positioning errors and enhancing the precision of motion control systems.
  • Enhanced Reliability: The flexibility of beam couplings compensates for misalignments, reducing stress on connected components and extending the lifespan of the motion system.
  • Reduced Vibrations: Beam couplings dampen vibrations, leading to smoother movements and preventing resonance-induced failures.
  • Weight and Space Savings: In applications with weight and space constraints, beam couplings’ lightweight design is advantageous.
  • Cost-Effectiveness: Beam couplings offer a cost-effective solution for motion control, especially when compared to more complex coupling options.

These successful installations demonstrate the versatility and effectiveness of beam couplings across various industries, highlighting their ability to improve motion system performance, reliability, and efficiency.

clamp coupling

Different Types of Beam Couplings for Various Applications

Beam couplings come in various designs to meet different application requirements. Each type offers specific advantages and limitations. Here are some common types of beam couplings used in various applications:

  • 1. Single-Beam Couplings:

    Single-beam couplings consist of a single helical beam that connects the two shafts. They are simple in design and provide good flexibility for compensating angular misalignment. These couplings are ideal for applications where space is limited, and angular misalignment is the primary concern.

  • 2. Multi-Beam Couplings:

    Multi-beam couplings have multiple helical beams arranged in parallel around the circumference of the coupling. This design enhances the coupling’s flexibility and allows for better compensation of angular, axial, and parallel misalignment. Multi-beam couplings are commonly used in applications requiring more comprehensive misalignment compensation and smoother torque transmission.

  • 3. Bellows Couplings:

    Bellows couplings use a thin-walled, accordion-like metal bellows as the flexible element. This design provides high flexibility, making them suitable for applications with significant angular and axial misalignment. Bellows couplings are also effective at damping vibrations and providing precise motion control in sensitive systems.

  • 4. Servo Disc Couplings:

    Servo disc couplings consist of a series of thin metal discs stacked together with a central spacer. This design allows for high torsional rigidity and excellent misalignment compensation. Servo disc couplings are often used in precision applications where minimal backlash and high torque transmission are required.

  • 5. Slit Couplings:

    Slit couplings have one or more slits cut into the helical beam, providing additional flexibility. The slits allow for better compensation of misalignment and increased torsional flexibility. Slit couplings are commonly used in applications with moderate misalignment requirements and where vibration dampening is essential.

  • 6. Step Beam Couplings:

    Step beam couplings have helical beams with varying thickness along their length. This design provides a progressive flexibility gradient, allowing for smoother torque transmission and better misalignment compensation. Step beam couplings are often used in applications where shock absorption and vibration isolation are crucial.

  • 7. Jaw Couplings with Beam Elements:

    Jaw couplings with beam elements combine the features of traditional jaw couplings with the flexibility of beam couplings. They offer excellent misalignment compensation, shock absorption, and easy installation, making them suitable for various power transmission and motion control applications.

The choice of the most suitable beam coupling type depends on the specific requirements of the application, such as the level of misalignment, torque capacity, damping requirements, and the overall system design. Understanding the strengths and limitations of each type will help in selecting the best beam coupling for a particular application, ensuring efficient and reliable performance in various mechanical systems.

China best Stainless Steel Aluminum Miniature Flexible Beam Coupling Encoder Coupling  China best Stainless Steel Aluminum Miniature Flexible Beam Coupling Encoder Coupling
editor by CX 2024-02-04