Product Description

Product Name Metal bellow coupling
Material Aluminum 
Type BC16-82
Structure  1 shaft ( 1 / 1a / 1b ) with bore
Bore size  4-42 mm
Weight  About 8-1200G g / pcs
packing plastic bag +paper box +wooden box +wooden pallet

1. Engineering: machine tools, foundry equipments, conveyors, compressors, painting systems, etc.

2. Pharmaceuticals& Food Processing: pulp mill blowers, conveyor in warehouse, agitators, grain, boiler, bakery machine, labeling machine, robots, etc.

3. Agriculture Industries: cultivator, rice winnower tractor, harvester, rice planter, farm equipment, etc.

4. Texitile Mills: looms, spinning, wrappers, high-speed auto looms, processing machine, twister, carding machine, ruler calendar machine, high speed winder, etc.

5. Printing Machinery: newspaper press, rotary machine, screen printer machine, linotype machine offset printer, etc.

6. Paper Industries: chipper roll grinder, cut off saw, edgers, flotation cell and chips saws, etc.

7. Building Construction Machinery: buffers, elevator floor polisher mixing machine, vibrator, hoists, crusher, etc.

8. Office Equipments: typewriter, plotters, camera, money drive, money sorting machine, data storage equipment, etc.

9. Glass and Plastic Industries: conveyor, carton sealers, grinders, creeper paper manufacturing machine, lintec backing, etc.

10. Home Appliances: vacuum cleaner, laundry machine, icecream machine, sewing machine, kitchen equipments, etc.

  

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Temperature and Environmental Limits for Various Beam Coupling Materials

The temperature and environmental limits of beam coupling materials depend on their specific composition and properties. Different materials have varying degrees of resistance to temperature extremes, chemicals, humidity, and other environmental factors. Here are some common beam coupling materials and their associated temperature and environmental limits:

  • 1. Stainless Steel:

    Stainless steel beam couplings are known for their excellent mechanical properties and resistance to corrosion. They can typically operate within a wide temperature range, from -40°C to 300°C (-40°F to 572°F). Stainless steel is also resistant to most chemicals, making it suitable for various environments, including industrial and outdoor applications.

  • 2. Aluminum:

    Aluminum beam couplings offer lightweight construction and moderate mechanical properties. They have a more limited temperature range compared to stainless steel, typically operating between -20°C to 120°C (-4°F to 248°F). While aluminum has good corrosion resistance in certain environments, it is not as durable as stainless steel in harsh conditions.

  • 3. Brass:

    Brass beam couplings have reasonable mechanical properties and corrosion resistance. They are suitable for applications with temperatures ranging from -20°C to 100°C (-4°F to 212°F). Brass is more susceptible to corrosion in certain environments, so it is essential to consider the specific application’s conditions.

  • 4. Plastic/Polymer:

    Beam couplings made from plastic or polymer materials offer lightweight and cost-effective solutions. However, their temperature limits are more restricted compared to metal couplings. They typically operate between -30°C to 80°C (-22°F to 176°F). These couplings may not be suitable for high-temperature or chemically aggressive environments.

  • 5. Carbon Steel:

    Carbon steel beam couplings are known for their strength and mechanical properties. They generally operate between -40°C to 120°C (-40°F to 248°F). Carbon steel is vulnerable to corrosion, so it may not be ideal for applications in corrosive or humid environments without proper protection.

It’s crucial to consider the temperature and environmental conditions of your specific application when selecting a beam coupling material. Choosing a material that can withstand the intended operating conditions will ensure the longevity and reliable performance of the coupling.

Additionally, keep in mind that various beam coupling manufacturers may offer specific variations of materials with different properties and limits. Always refer to the manufacturer’s datasheets and technical documentation for precise information on the temperature and environmental limits of their beam coupling products.

clamp coupling

Real-World Examples of Successful Beam Coupling Installations and Their Benefits

Beam couplings have been widely adopted in various industries, and there are numerous real-world examples of successful installations showcasing their benefits. Here are some specific cases:

  • Industrial Automation:

    In a factory automation setting, beam couplings are used in robotic arms and automated machinery to transmit torque between motors and actuators. The flexibility of beam couplings helps compensate for minor misalignments, reducing wear on connected components and enhancing system reliability. Additionally, the low inertia of beam couplings enables faster response times, improving the overall efficiency of the automated systems.

  • Medical Robotics:

    Medical robots, such as surgical robots and diagnostic equipment, rely on precise and smooth motion control. Beam couplings, with their low backlash and high torsional stiffness, ensure accurate positioning and reduced vibration. The stainless-steel construction of some medical-grade beam couplings makes them suitable for sterilization processes, ensuring compliance with medical industry requirements.

  • Photonic Systems:

    In optical systems and laser equipment, beam couplings are used to connect stepper motors and motion stages. The damping properties of beam couplings help reduce vibrations, preventing optical misalignment and maintaining the stability of laser beams. This is critical for high-precision applications like laser cutting and micromachining.

  • Satellite Components:

    Beam couplings find applications in satellite components, where weight and size constraints are critical. Aluminum or lightweight alloys are used to minimize the overall mass while providing reliable power transmission between actuators and mechanisms. The low inertia of beam couplings contributes to smoother satellite movements and precise adjustments in space.

  • Renewable Energy Systems:

    Beam couplings are employed in renewable energy systems, such as solar tracking mechanisms and wind turbine pitch control systems. Their ability to handle harsh environmental conditions, such as wind and weather exposure, ensures consistent and efficient energy production. The use of non-magnetic materials in some couplings prevents interference with sensitive electronics.

The benefits of successful beam coupling installations in these real-world examples include:

  • Improved Precision: Beam couplings provide accurate torque transmission, reducing positioning errors and enhancing the precision of motion control systems.
  • Enhanced Reliability: The flexibility of beam couplings compensates for misalignments, reducing stress on connected components and extending the lifespan of the motion system.
  • Reduced Vibrations: Beam couplings dampen vibrations, leading to smoother movements and preventing resonance-induced failures.
  • Weight and Space Savings: In applications with weight and space constraints, beam couplings’ lightweight design is advantageous.
  • Cost-Effectiveness: Beam couplings offer a cost-effective solution for motion control, especially when compared to more complex coupling options.

These successful installations demonstrate the versatility and effectiveness of beam couplings across various industries, highlighting their ability to improve motion system performance, reliability, and efficiency.

clamp coupling

Selecting the Appropriate Beam Coupling for Your Motion Control Needs

Choosing the right beam coupling for your specific motion control needs involves considering several factors to ensure optimal performance and reliability. Here’s a step-by-step guide to help you make an informed decision:

  1. Identify Application Requirements:

    Start by understanding the specific requirements of your motion control application. Consider factors such as the type and amount of misalignment, torque capacity, shaft sizes, operating environment, speed, and precision requirements.

  2. Types of Beam Couplings:

    Familiarize yourself with the different types of beam couplings available, such as single-beam, multi-beam, bellows, servo disc, slit, step beam, and jaw couplings with beam elements. Each type has unique characteristics that cater to different motion control needs.

  3. Misalignment Compensation:

    Assess the level of misalignment in your application. If you require compensation for angular, axial, and parallel misalignment, multi-beam or bellows couplings might be suitable. For primarily angular misalignment, a single-beam coupling could be sufficient.

  4. Torsional Rigidity:

    Consider the required torsional rigidity for precise motion control. Servo disc couplings offer high torsional rigidity and low backlash, making them ideal for precision applications, while slit couplings provide more torsional flexibility and vibration dampening.

  5. Environmental Factors:

    Take into account the operating environment, including temperature, humidity, and exposure to chemicals. Choose a beam coupling with materials that can withstand the environmental conditions of your application.

  6. Speed and Torque Capacity:

    Evaluate the speed and torque requirements of your motion control system. Ensure that the selected coupling can handle the specified torque while maintaining the desired speed without compromising performance.

  7. Space Constraints:

    If your application has limited space, consider compact designs like single-beam or slit couplings. These types can efficiently fit into tight spaces while providing the necessary misalignment compensation.

  8. Backlash and Precision:

    For applications that demand minimal backlash and high precision, servo disc couplings are a suitable choice due to their exceptional torsional rigidity and accurate torque transmission.

  9. Vibration Dampening:

    If your system requires vibration dampening to protect sensitive components or improve overall performance, consider beam couplings with features like slits or bellows.

  10. Customization Options:

    Check if the coupling supplier offers customization options. Some manufacturers can tailor the beam coupling to meet specific application requirements, providing an optimal solution for your motion control needs.

  11. Consult with Experts:

    If you are uncertain about the best beam coupling choice for your application, consult with motion control experts or the coupling manufacturer’s technical support team. They can offer valuable insights and recommendations based on your specific needs.

By carefully evaluating these factors and considering the advantages and limitations of each beam coupling type, you can select the most appropriate coupling for your motion control needs. Making the right choice will contribute to the efficiency, reliability, and longevity of your motion control system.

China Best Sales Best Price Mighty Aluminum Beam/Rigid Coupling CNC Flexible Jaw Plum Coupling with Red Rubber  China Best Sales Best Price Mighty Aluminum Beam/Rigid Coupling CNC Flexible Jaw Plum Coupling with Red Rubber
editor by CX 2024-01-12